NOMAD: Nonlocking, stOchastic Multi-machine algorithm for Asynchronous and Decentralized matrix completion

نویسندگان

  • Hyokun Yun
  • Hsiang-Fu Yu
  • Cho-Jui Hsieh
  • S. V. N. Vishwanathan
  • Inderjit S. Dhillon
چکیده

We develop an efficient parallel distributed algorithm for matrix completion, named NOMAD (Non-locking, stOchastic Multi-machine algorithm for Asynchronous and Decentralized matrix completion). NOMAD is a decentralized algorithm with non-blocking communication between processors. One of the key features of NOMAD is that the ownership of a variable is asynchronously transferred between processors in a decentralized fashion. As a consequence it is a lock-free parallel algorithm. In spite of being asynchronous, the variable updates of NOMAD are serializable, that is, there is an equivalent update ordering in a serial implementation. NOMAD outperforms synchronous algorithms which require explicit bulk synchronization after every iteration: our extensive empirical evaluation shows that not only does our algorithm perform well in distributed setting on commodity hardware, but also outperforms stateof-the-art algorithms on a HPC cluster both in multi-core and distributed memory settings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cover Feature Big Data

Today’s applications often contain datasets that are too big to fit in a single computer’s main memory. Analyzing these massive datasets will require scalable and sophisticated machine-learning methods. Two commonly used approaches are stochastic optimization and inference algorithms,1 which process one data point at a time; and distributed computing based on the MapReduce framework,2 where the...

متن کامل

Decentralized and Cooperative Multi-Sensor Multi-Target Tracking With Asynchronous Bearing Measurements

Bearings only tracking is a challenging issue with many applications in military and commercial areas. In distributed multi-sensor multi-target bearings only tracking, sensors are far from each other, but are exchanging data using telecommunication equipment. In addition to the general benefits of distributed systems, this tracking system has another important advantage: if the sensors are suff...

متن کامل

Asynchronous Decentralized Parallel Stochastic Gradient Descent

Recent work shows that decentralized parallel stochastic gradient decent (D-PSGD) can outperform its centralized counterpart both theoretically and practically. While asynchronous parallelism is a powerful technology to improve the efficiency of parallelism in distributed machine learning platforms and has been widely used in many popular machine learning softwares and solvers based on centrali...

متن کامل

A MULTI-OBJECTIVE DECENTRALIZED MULTIPLE CONSTRUCTION PROJECTS SCHEDULING PROBLEM CONSIDERING PERIODIC SERVICES AND ORDERING POLICIES

In decentralized construction projects, costs are mostly related to investment, material, holding, logistics, and other minor costs for implementation. For this reason, simultaneous planning of these items and appropriate scheduling of activities can significantly reduce the total costs of the project undertaken. This paper investigates the decentralized multiple construction projects schedulin...

متن کامل

Taming the Wild: A Unified Analysis of Hogwild-Style Algorithms

Stochastic gradient descent (SGD) is a ubiquitous algorithm for a variety of machine learning problems. Researchers and industry have developed several techniques to optimize SGD's runtime performance, including asynchronous execution and reduced precision. Our main result is a martingale-based analysis that enables us to capture the rich noise models that may arise from such techniques. Specif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PVLDB

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2014